Распределения - определение. Что такое Распределения
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Распределения - определение

Гиббса распределения; Каноническое распределение; Распределения Гиббса

Распределения      

одно из основных понятий теории вероятностей и математической статистики. Р. вероятностей какой-либо случайной величины, т. е. величины, принимающей в зависимости от случая то или иное численное значение, задаётся указанием возможных значений этой величины и соответствующих им вероятностей. Так, например, для числа m очков, выпадающих на верхней грани игральной кости, Р. вероятностей pm задаётся табличкой:

------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Возможные значения m | 1 | 2 | 3 | 4 | 5 | 6 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Соответствующие | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |

| вероятности pm | | | | | | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------

Подобным же образом Р. любой случайной величины X, возможные значения которой образуют конечную или бесконечную последовательность, задаётся указанием этих значений

x1, x2, ..., xn, ...

и соответствующих им вероятностей

p1, p2, ..., pn, ...

При этом вероятности pm должны быть положительны и в сумме должны давать единицу. Р. указанного типа называются дискретными. Примером дискретного Р. может служить Пуассона распределение, определяемое вероятностями

, r = 0, 1, 2, ...,

где λ > 0- параметр.

Однако задание Р. указанием возможных значений xn и соответствующих вероятностей pn не всегда возможно. Например, если величина распределена "равномерно" на отрезке [-1/2, +1/2], подобно "ошибкам округления" при измерении непрерывных величин, то вероятность каждого отдельного значения равна нулю. Р. таких случайных величин задаётся указанием вероятности того, что случайная величина Х примет значение из любого наперёд заданного интервала. В том случае, когда существует функция pX (x) такая, что вероятность попадания Х в любой интервал (а, b) равна

Р. величины Х называется непрерывным. Функция pX (x) носит название плотности вероятности (См. Плотность вероятности). Плотность вероятности неотрицательна и обладает тем свойством, что

В указанном выше случае равномерного Р. на отрезке [-1/2, +1/2]

Важнейшее Р. непрерывного типа - Нормальное распределение с плотностью

(а и σ > 0 - параметры).

Р. случайных величин не исчерпываются дискретным и непрерывным типами: они могут быть и более сложной природы. Поэтому желательно иметь такое описание Р., которое было бы пригодно во всех случаях. Это описание может быть достигнуто, например, при помощи т. н. функции распределения FX (x). Значение этой функции при каждом фиксированном х равно вероятности Р {Х < х} того, что случайная величина х примет значение, меньшее x, т. е.

FX (x) = Р {Х < x}.

Функция Р. есть неубывающая функция x, изменяющаяся от 0 до 1 при изменении х от - ∞ до + ∞. Вероятность того, что Х примет значение из некоторого полуинтервала [a, b), равна вероятности того, что Х будет удовлетворять неравенству аХ < b, т. е. равна

F (b) - F (a).

Примеры. 1) Пусть Е - некоторое событие, вероятность появления которого есть р, где 0 < р < 1. Тогда число μ появлений события Е при n независимых наблюдениях есть случайная величина, принимающая значения m = 0, 1, 2, ..., n с вероятностями

(q = 1 - p)

Это Р. носит название биномиального распределения (См. Биномиальное распределение). Биномиальное Р. (см. рис. 1, а и б) при больших n близко к нормальному в силу Лапласа теоремы (См. Лапласа теорема).

2) Число наблюдений до первого появления события Е из примера 1 есть случайная величина, принимающая все целые значения m = 1, 2, 3, ... с вероятностями

pm = qm-1p.

Это Р., носит название геометрического, т.к. последовательность {pm} есть геометрическая прогрессия (см. рис. 2, а и б).

3) Р., плотность которого р (х) равна 1/2h на некотором интервале (а - h, а + h) и равна нулю вне этого интервала, носит название равномерного распределения (См. Равномерное распределение). Соответствующая функция Р. растет линейно от 0 до 1 при изменении х от а - h до а + h (см. рис. 3, а и б).

Пусть случайные величины Х и Y связаны соотношением Y = f (X), где f (x) - заданная функция. Тогда Р. Y может быть довольно просто выражено через Р. X. Например, если Х имеет нормальное Р. и Y = eX, то Y имеет т. н. Логарифмически-нормальное распределение с плотностью (см. рис. 4)

.

Формулы, связывающие Р. величин X и Y, становятся особенно простыми, когда Y = aX + b, где а и b - постоянные. Так, при a > 0

Часто полное описание Р. (например, при помощи плотности или функции Р.) заменяют заданием небольшого числа характеристик, которые указывают или на наиболее типичные (в том или ином смысле) значения случайной величины, или на степень рассеяния значений случайной величины около некоторого типичного значения. Из этих характеристик наиболее употребительны математическое ожидание (среднее значение) и дисперсия. Математическое ожидание EX случайной величины X, имеющей дискретное Р., определяется как сумма ряда

при условии, что этот ряд сходится абсолютно. Для случайной величины X, имеющей Р. непрерывного типа с плотностью pX (x), математическое ожидание определяется формулой

EX =

при условии, что написанный интеграл сходится абсолютно. Если Y = f (X), то EY может быть вычислено двумя способами. Например, если Х и Y имеют непрерывное Р., то, с одной стороны, по определению

EY =

с другой стороны, можно показать, что

EY =

Дисперсия DX определяется как

DX = Е (Х - EX)2,

т. е., например, для непрерывного Р.

DX =

Р. вероятностей имеют много общего с Р. каких-либо масс на прямой. Так, случайной величине X, принимающей значения x1 x2 ..., xn c вероятностями p1, p2, ..., pn, можно поставить в соответствие Р. масс, при котором в точках xk размещены массы, равные pk. При этом формулы для EX и DX оказываются совпадающими с формулами, определяющими соответственно центр тяжести и момент инерции указанной системы материальных точек. Подробнее о числовых характеристиках Р. см. в статьях Квантиль, Медиана, Мода, Математическое ожидание, Вероятное отклонение, Дисперсия, Квадратичное отклонение.

Если складываются несколько независимых случайных величин, то их сумма будет случайной величиной, Р. которой зависит только от Р. слагаемых (чего не будет, как правило, при сложении зависимых случайных величин). При этом, например, для случая двух слагаемых, каждое из которых имеет Р. непрерывного типа, имеет место формула:

(*)

В весьма широких предположениях Р. суммы независимых случайных величин при увеличении числа слагаемых приближается к нормальному Р. или к др. предельным Р. (см. Предельные теоремы теории вероятностей). Однако для установления этого факта явные формулы типа (*) практически непригодны, поэтому доказательство ведётся обходным путём, обычно с использованием т. н. характеристических функций (См. Характеристическая функция).

Статистические распределения и их связь с вероятностными. Пусть произведено n независимых наблюдений случайной величины X, имеющей функцию Р. F (x). Статистическое Р. результатов наблюдений задаётся указанием наблюдённых значений x1, x2, ..., xr случайной величины Х и соответствующих им частот h1, h2, ..., hr (т. е. отношений числа наблюдений, в которых появляется данное значение, к общему числу наблюдений). Например, если при 15 наблюдениях значение 0 наблюдалось 8 раз, значение 1 наблюдалось 5 раз, значение 2 наблюдалось 1 раз и значение 3 наблюдалось 1 раз, то соответствующее статистическое Р. задаётся табличкой:

----------------------------------------------------------------------------------------------------------------------------------------------------------------

| Наблюдённые значения Xm | 0 | 1 | 2 | 3 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Соответствующие частоты hm | 8/15 | 1/3 | 1/15 | 1/15 |

----------------------------------------------------------------------------------------------------------------------------------------------------------------

Частоты всегда положительны и в сумме дают единицу. С заменой слова "вероятность" на слово "частота" к статистическому Р. применимы многие определения, данные выше для Р. вероятностей. Так, если x1, x2, ..., xr - наблюдённые значения X, a h1, h2, ..., hr - частоты этих наблюдённых значений, то соответствующие статистическому Р. среднее и дисперсия (т. н. выборочное среднее и выборочная дисперсия) определяются равенствами

,

а соответствующая функция Р. (т. н. эмпирическая функция распределения) - равенством

F*(x) = nx/n,

где nx - число наблюдений, результат которых меньше х. Статистическое Р. и его характеристики могут быть использованы для приближённого представления теоретического Р. и его характеристик. Так, например, если Х имеет конечные математическое ожидание и дисперсию, то, каково бы ни было ε > 0, неравенства

выполняются при достаточно большом n с вероятностью, сколь угодно близкой к единице. Т. о., χ̅ и s2 суть состоятельные оценки для EX и DX соответственно (см. Статистические оценки). Советский математик В. И. Гливенко показал, что при любом ε > 0 вероятность неравенства

при всех x стремится к единице при n, стремящемся к бесконечности. Более точный результат установлен сов. математиком А. Н. Колмогоровым; см. об этом Непараметрические методы в математической статистике.

Многомерные распределения. Пусть Х и Y - две случайные величины. Каждой паре (X, Y) можно отнести точку Z на плоскости с координатами Х и Y, положение которой будет зависеть от случая. Совместное Р. величин Х и Y задаётся указанием возможных положений точки Z и соответствующих вероятностей. Здесь также можно выделить два основных типа Р.

1) Дискретные распределения. Возможные положения точки Z образуют конечную или бесконечную последовательность. Р. задаётся указанием возможных положений точки Z

z1, z2, ..., zn, ...

и соответствующих вероятностей p1, p2, ..., pn, ...

2) Непрерывные распределения задаются плотностью вероятности р (x, у), обладающей тем свойством, что вероятность попадания точки Z в какую-либо область G равна

Пример: двумерное нормальное Р. с плотностью

,

где

mX = EX, mY = EY,

,

- математические ожидания и дисперсии величин Х и Y,

и R - коэффициент корреляции величин Х и Y:

Аналогично можно рассматривать Р. вероятностей в пространствах трёх и большего числа измерений. О многомерных Р. см. также Корреляция, Регрессия.

О возможности дальнейших обобщений и о связи между понятием меры множества (См. Мера множества) и понятием Р. см. Вероятностей теория.

Лит.: Гнеденко Б. В., Курс теории вероятностей, д изд., М., 1969; Крамер Г., Математические методы статистики пер. с англ., М., 1948; Феллер В., Введение в теорию вероятностей и её приложения пер. с англ., 2 изд., т. 1-2, М., 1967; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968

Ю. В. Прохоров.

Рис. 1. Биномиальное распределение: а - вероятности pm = ; б - функция распределения ( n = 10, p = 0,2 ). Гладкими кривыми изображено нормальное приближение биномиального распределения.

Рис. 2. Геометрическое распределение: а - вероятности ; б - функция распределения (р = 0,2).

Рис. 3. Равномерное распределение: а - плотность вероятности; б - функция распределения.

Рис. 4. Плотность логарифмически-нормального распределения (m = 2, σ = 1).

РАСПРЕДЕЛЕНИЯ      
одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных - т. н. функцией распределения или плотностью вероятности. Примеры распределения - см. Биномиальное распределение, Нормальное распределение, Равномерное распределение.
Функция распределения         
  • Функции распределения

основное понятие статистической физики (См. Статистическая физика); характеризует плотность вероятности распределения частиц статистической системы по фазовому пространству (См. Фазовое пространство) (т. е. по координатам (qi и импульсам pi) в классической статистической физике или вероятность распределения по квантовомеханическим состояниям в квантовой статистике.

В классической статистической физике Ф. р. f (p, q, t) определяет вероятность dω = f (p, q, t) dp dq обнаружить систему из N частиц в момент времени t в элементе фазового объёма dpdq = dp1dq1... dpN ×dqN вблизи точки p1, q1,..., pN, qn. Учитывая, что перестановка тождественных (одинаковых) частиц не меняет состояния, следует уменьшить фазовый объём в N! раз; кроме того, удобно перейти к безразмерному элементу (Базового объёма, заменив dpdq на dpdq/N! h3N, где Планка постоянная h определяет минимальный размер ячейки в фазовом пространстве. См. также Гиббса распределение.

Википедия

Распределение Гиббса

Распределение (каноническое) Гиббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом (окружающей средой). В классическом случае плотность распределения равна

w ( X , a ) = 1 Z e β H ( X , a ) , {\displaystyle w(X,a)={\frac {1}{Z}}e^{-\beta H(X,a)},}

где X {\displaystyle X}  — совокупность 6 N {\displaystyle 6N} канонических переменных N {\displaystyle N} частиц ( 3 N {\displaystyle 3N} координат и 3 N {\displaystyle 3N} импульсов), a {\displaystyle a}  — совокупность внешних параметров, H ( X , a ) {\displaystyle H(X,a)}  — гамильтониан системы, β {\displaystyle \beta }  — параметр распределения. Величину Θ = 1 β {\displaystyle \Theta ={\frac {1}{\beta }}} называют модулем распределения. Можно показать, что модуль распределения Θ = k T {\displaystyle \Theta =kT} , где T {\displaystyle T}  — абсолютная температура, k {\displaystyle k}  — постоянная Больцмана. Z {\displaystyle Z}  — параметр, определяемый исходя из условия нормировки ( X ) w ( X , a ) d X = 1 {\displaystyle \int _{(X)}w(X,a)dX=1} , откуда следует, что

Z = ( X ) e β H ( X , a ) d X . {\displaystyle Z=\int _{(X)}e^{-\beta H(X,a)}dX.}

Z {\displaystyle Z} называют интегралом состояний.

Часто используют следующую параметризацию распределения Гиббса:

w ( X , a ) = e Ψ ( Θ , a ) H ( X , a ) Θ , {\displaystyle w(X,a)=e^{\frac {\Psi (\Theta ,a)-H(X,a)}{\Theta }},}

где Ψ ( Θ , a ) = Θ ln Z ( Θ , a ) {\displaystyle \Psi (\Theta ,a)=-\Theta \ln Z(\Theta ,a)}  — так называемая свободная энергия системы.

В квантовом случае предполагается счётное множество энергетических уровней, и вместо плотности распределения рассматривается вероятность нахождения системы в том или ином состоянии:

W i = e Ψ E i Θ . {\displaystyle W_{i}=e^{\frac {\Psi -E_{i}}{\Theta }}.}

Условие нормировки имеет вид i = 0 W i = 1 {\displaystyle \sum _{i=0}^{\infty }W_{i}=1} , следовательно

Z = i = 0 e E i Θ , {\displaystyle Z=\sum _{i=0}^{\infty }e^{-{\frac {E_{i}}{\Theta }}},}

что является аналогом интеграла состояний и называется суммой состояний или статистической суммой.

Распределение Гиббса представляет наиболее общую и удобную основу для построения равновесной статистической механики. Знание распределения частиц системы позволяет найти средние значения различных характеристик термодинамической системы по формуле математического ожидания. С учётом большого количества частиц в макроскопических системах, эти математические ожидания в силу закона больших чисел совпадают с реально наблюдаемыми значениями термодинамических параметров.

Примеры употребления для Распределения
1. -- Перераспределения -- Нет, именно распределения.
2. Готовиться новый порядок распределения крупных месторождений Минприроды готовит новый порядок распределения крупных месторождений.
3. Сейчас нет обязательного распределения выпускников.
4. Логичность распределения активов вполне обоснованна.
5. Возникает проблема распределения рентных доходов.